Repository Information
- Repository Name: IndexedConv/IndexedConv: v1.3.2
- Record ID: 7293664
- Repository URL: git+https://github.com/IndexedConv/IndexedConv.git
- Tool Type: SoftwareSourceCode
- Version: 1.3.2
Results
| Indicator | generated by | evidence | Value | Run Status | Check passed |
|---|---|---|---|---|---|
| https://w3id.org/everse/i/indicators/codemeta_completeness | Codemeta Completeness Tool | Codemeta completeness = 32.4%, minimal threshold to consider this check to pass is set to 20.0%. Found ['codeRepository', 'programmingLanguage', 'applicationCategory', 'downloadUrl', 'softwareVersion', 'author', 'dateCreated', 'dateModified', 'datePublished', 'funder', 'keywords', 'license', 'version', 'isPartOf', 'description', 'identifier', 'name', 'identifier', 'name', 'maintainer', 'contIntegration', 'funding', 'issueTracker', 'readme'] keys in codemeta file. | 0.32432432432432434 | ✅ | ✅ |
| https://w3id.org/everse/i/indicators/codemeta_completeness | Codemeta Completeness Tool | Codemeta completeness = 32.4%, minimal threshold to consider this check to pass is set to 50.0%. Found ['codeRepository', 'programmingLanguage', 'applicationCategory', 'downloadUrl', 'softwareVersion', 'author', 'dateCreated', 'dateModified', 'datePublished', 'funder', 'keywords', 'license', 'version', 'isPartOf', 'description', 'identifier', 'name', 'identifier', 'name', 'maintainer', 'contIntegration', 'funding', 'issueTracker', 'readme'] keys in codemeta file. | 0.32432432432432434 | ✅ | ❌ |
| https://w3id.org/everse/i/indicators/doi_presence | SOMEF | DOI not found in SOMEF output. Confidence: 0.0% | ❌ | ❌ | |
| https://w3id.org/everse/i/indicators/codemeta_discrepancy | SOMEF, Codemeta Completeness Tool | Comparison value: 0.6764705882352942, Threshold: 0.5, Status: True | 0.6764705882352942 | ❌ | ✅ |
Results Output
https://w3id.org/everse/i/indicators/codemeta_completeness
- Status: CompletedActionStatus
- Value: 0.32
- Evidence: Codemeta completeness = 32.4%, minimal threshold to consider this check to pass is set to 20.0%. Found ['codeRepository', 'programmingLanguage', 'applicationCategory', 'downloadUrl', 'softwareVersion', 'author', 'dateCreated', 'dateModified', 'datePublished', 'funder', 'keywords', 'license', 'version', 'isPartOf', 'description', 'identifier', 'name', 'identifier', 'name', 'maintainer', 'contIntegration', 'funding', 'issueTracker', 'readme'] keys in codemeta file.
- Output:
{"pass": true, "value": 0.32432432432432434, "codemeta_dict": {"@context": "https://doi.org/10.5063/schema/codemeta-2.0", "@type": "SoftwareSourceCode", "license": "https://spdx.org/licenses/MIT", "codeRepository": "git+https://github.com/IndexedConv/IndexedConv.git", "contIntegration": "https://github.com/IndexedConv/IndexedConv/actions", "dateCreated": "2018-12-05", "datePublished": "2019-01-14", "dateModified": "2022-01-20", "downloadUrl": "https://zenodo.org/record/5884046/files/IndexedConv/IndexedConv-v1.3.1.zip", "issueTracker": "https://github.com/IndexedConv/IndexedConv/issues", "name": "IndexedConv", "version": "1.3.2", "softwareVersion": "1.3.2", "maintainer": {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, "readme": "https://raw.githubusercontent.com/IndexedConv/IndexedConv/master/README.rst", "identifier": "10.5281/zenodo.2542651", "description": "The indexed operations allow the user to perform convolution and pooling on non-Euclidian grids of data given that the neighbors pixels of each pixel is known and provided.\n\nIt gives an alternative to masking or resampling the data in order to apply standard Euclidian convolution. This solution has been developed in order to apply convolutional neural networks to data from physics experiments that propose specific pixels arrangements.\n\nIt is used in the GammaLearn project for the Cherenkov Telescope Array.\n\nHere you will find the code for the indexed operations as well as applied examples. The current implementation has been done for pytorch.", "applicationCategory": "deep learning", "funding": "ESCAPE 824064, ASTERICS 653477", "isPartOf": "https://purl.org/gammalearn", "funder": {"@type": "Organization", "name": "European Union's Horizon 2020 research and innovation programme"}, "keywords": ["CTA"], "programmingLanguage": ["Python 3"], "author": [{"@type": "Person", "givenName": "Thomas", "familyName": "Vuillaume", "@id": "https://orcid.org/0000-0002-5686-2078", "email": "thomas.vuillaume@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Antiga", "familyName": "Luca", "affiliation": {"@type": "Organization", "name": "Orobix"}}]}, "threshold": 0.2}
https://w3id.org/everse/i/indicators/codemeta_completeness
- Status: CompletedActionStatus
- Value: 0.32
- Evidence: Codemeta completeness = 32.4%, minimal threshold to consider this check to pass is set to 50.0%. Found ['codeRepository', 'programmingLanguage', 'applicationCategory', 'downloadUrl', 'softwareVersion', 'author', 'dateCreated', 'dateModified', 'datePublished', 'funder', 'keywords', 'license', 'version', 'isPartOf', 'description', 'identifier', 'name', 'identifier', 'name', 'maintainer', 'contIntegration', 'funding', 'issueTracker', 'readme'] keys in codemeta file.
- Output:
{"pass": false, "value": 0.32432432432432434, "codemeta_dict": {"@context": "https://doi.org/10.5063/schema/codemeta-2.0", "@type": "SoftwareSourceCode", "license": "https://spdx.org/licenses/MIT", "codeRepository": "git+https://github.com/IndexedConv/IndexedConv.git", "contIntegration": "https://github.com/IndexedConv/IndexedConv/actions", "dateCreated": "2018-12-05", "datePublished": "2019-01-14", "dateModified": "2022-01-20", "downloadUrl": "https://zenodo.org/record/5884046/files/IndexedConv/IndexedConv-v1.3.1.zip", "issueTracker": "https://github.com/IndexedConv/IndexedConv/issues", "name": "IndexedConv", "version": "1.3.2", "softwareVersion": "1.3.2", "maintainer": {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, "readme": "https://raw.githubusercontent.com/IndexedConv/IndexedConv/master/README.rst", "identifier": "10.5281/zenodo.2542651", "description": "The indexed operations allow the user to perform convolution and pooling on non-Euclidian grids of data given that the neighbors pixels of each pixel is known and provided.\n\nIt gives an alternative to masking or resampling the data in order to apply standard Euclidian convolution. This solution has been developed in order to apply convolutional neural networks to data from physics experiments that propose specific pixels arrangements.\n\nIt is used in the GammaLearn project for the Cherenkov Telescope Array.\n\nHere you will find the code for the indexed operations as well as applied examples. The current implementation has been done for pytorch.", "applicationCategory": "deep learning", "funding": "ESCAPE 824064, ASTERICS 653477", "isPartOf": "https://purl.org/gammalearn", "funder": {"@type": "Organization", "name": "European Union's Horizon 2020 research and innovation programme"}, "keywords": ["CTA"], "programmingLanguage": ["Python 3"], "author": [{"@type": "Person", "givenName": "Thomas", "familyName": "Vuillaume", "@id": "https://orcid.org/0000-0002-5686-2078", "email": "thomas.vuillaume@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Antiga", "familyName": "Luca", "affiliation": {"@type": "Organization", "name": "Orobix"}}]}, "threshold": 0.5}
https://w3id.org/everse/i/indicators/codemeta_discrepancy
- Status: FailedActionStatus
- Value: 0.68
- Evidence: Comparison value: 0.6764705882352942, Threshold: 0.5, Status: True
- Output:
{"pass": true, "value": 0.6764705882352942, "threshold": 0.5, "results": {"completeness_1": 0.32432432432432434, "codemeta_version_1": "codemeta-2.0", "codemeta_version_2": "codemeta-3.0", "completeness_2": 0.0, "missing_keys_1": ["runtimePlatform", "targetProduct", "applicationSubCategory", "fileSize", "installUrl", "memoryRequirements", "operatingSystem", "permissions", "processorRequirements", "releaseNotes", "softwareHelp", "softwareRequirements", "storageRequirements", "supportingData", "citation", "contributor", "copyrightHolder", "copyrightYear", "editor", "encoding", "fileFormat", "producer", "provider", "publisher", "sponsor", "isAccessibleForFree", "hasPart", "position", "sameAs", "url", "relatedLink", "givenName", "familyName", "email", "affiliation", "address", "", "", "softwareSuggestions", "buildInstructions", "developmentStatus", "embargoDate", "referencePublication", "creator", "", "", "", "endDate", "roleName", "startDate"], "missing_keys_2": ["codeRepository", "programmingLanguage", "runtimePlatform", "targetProduct", "applicationCategory", "applicationSubCategory", "downloadUrl", "fileSize", "installUrl", "memoryRequirements", "operatingSystem", "permissions", "processorRequirements", "releaseNotes", "softwareHelp", "softwareRequirements", "softwareVersion", "storageRequirements", "supportingData", "author", "citation", "contributor", "copyrightHolder", "copyrightYear", "dateCreated", "dateModified", "datePublished", "editor", "encoding", "fileFormat", "funder", "keywords", "license", "producer", "provider", "publisher", "sponsor", "version", "isAccessibleForFree", "isPartOf", "hasPart", "position", "description", "identifier", "name", "sameAs", "url", "relatedLink", "givenName", "familyName", "email", "affiliation", "identifier", "name", "address", "", "", "softwareSuggestions", "maintainer", "continuousIntegration", "buildInstructions", "developmentStatus", "embargoEndDate", "funding", "issueTracker", "referencePublication", "readme", "creator", "review", "reviewAspect", "reviewBody", "endDate", "roleName", "startDate"], "existing_keys_1": ["codeRepository", "programmingLanguage", "applicationCategory", "downloadUrl", "softwareVersion", "author", "dateCreated", "dateModified", "datePublished", "funder", "keywords", "license", "version", "isPartOf", "description", "identifier", "name", "identifier", "name", "maintainer", "contIntegration", "funding", "issueTracker", "readme"], "existing_keys_2": [], "differences": {"codeRepository": {"value_in_1": "git+https://github.com/IndexedConv/IndexedConv.git", "value_in_2": null}, "programmingLanguage": {"value_in_1": ["Python 3"], "value_in_2": null}, "applicationCategory": {"value_in_1": "deep learning", "value_in_2": null}, "downloadUrl": {"value_in_1": "https://zenodo.org/record/5884046/files/IndexedConv/IndexedConv-v1.3.1.zip", "value_in_2": null}, "softwareVersion": {"value_in_1": "1.3.2", "value_in_2": null}, "author": {"value_in_1": [{"@type": "Person", "givenName": "Thomas", "familyName": "Vuillaume", "@id": "https://orcid.org/0000-0002-5686-2078", "email": "thomas.vuillaume@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, {"@type": "Person", "givenName": "Antiga", "familyName": "Luca", "affiliation": {"@type": "Organization", "name": "Orobix"}}], "value_in_2": null}, "dateCreated": {"value_in_1": "2018-12-05", "value_in_2": null}, "dateModified": {"value_in_1": "2022-01-20", "value_in_2": null}, "datePublished": {"value_in_1": "2019-01-14", "value_in_2": null}, "funder": {"value_in_1": {"@type": "Organization", "name": "European Union's Horizon 2020 research and innovation programme"}, "value_in_2": null}, "keywords": {"value_in_1": ["CTA"], "value_in_2": null}, "license": {"value_in_1": "https://spdx.org/licenses/MIT", "value_in_2": null}, "version": {"value_in_1": "1.3.2", "value_in_2": null}, "isPartOf": {"value_in_1": "https://purl.org/gammalearn", "value_in_2": null}, "description": {"value_in_1": "The indexed operations allow the user to perform convolution and pooling on non-Euclidian grids of data given that the neighbors pixels of each pixel is known and provided.\n\nIt gives an alternative to masking or resampling the data in order to apply standard Euclidian convolution. This solution has been developed in order to apply convolutional neural networks to data from physics experiments that propose specific pixels arrangements.\n\nIt is used in the GammaLearn project for the Cherenkov Telescope Array.\n\nHere you will find the code for the indexed operations as well as applied examples. The current implementation has been done for pytorch.", "value_in_2": null}, "identifier": {"value_in_1": "10.5281/zenodo.2542651", "value_in_2": null}, "name": {"value_in_1": "IndexedConv", "value_in_2": null}, "maintainer": {"value_in_1": {"@type": "Person", "givenName": "Mikael", "familyName": "Jacquemont", "@id": "https://orcid.org/0000-0002-4012-6930", "email": "jacquemont@lapp.in2p3.fr", "affiliation": {"@type": "Organization", "name": "Univ. Savoie Mont-Blanc, CNRS, LAPP"}}, "value_in_2": null}, "contIntegration": {"value_in_1": "https://github.com/IndexedConv/IndexedConv/actions", "value_in_2": null}, "funding": {"value_in_1": "ESCAPE 824064, ASTERICS 653477", "value_in_2": null}, "issueTracker": {"value_in_1": "https://github.com/IndexedConv/IndexedConv/issues", "value_in_2": null}, "readme": {"value_in_1": "https://raw.githubusercontent.com/IndexedConv/IndexedConv/master/README.rst", "value_in_2": null}}, "equivalences": {"runtimePlatform": null, "targetProduct": null, "applicationSubCategory": null, "fileSize": null, "installUrl": null, "memoryRequirements": null, "operatingSystem": null, "permissions": null, "processorRequirements": null, "releaseNotes": null, "softwareHelp": null, "softwareRequirements": null, "storageRequirements": null, "supportingData": null, "citation": null, "contributor": null, "copyrightHolder": null, "copyrightYear": null, "editor": null, "encoding": null, "fileFormat": null, "producer": null, "provider": null, "publisher": null, "sponsor": null, "isAccessibleForFree": null, "hasPart": null, "position": null, "sameAs": null, "url": null, "relatedLink": null, "givenName": null, "familyName": null, "email": null, "affiliation": null, "address": null, "": null, "softwareSuggestions": null, "buildInstructions": null, "developmentStatus": null, "embargoDate": null, "referencePublication": null, "creator": null, "endDate": null, "roleName": null, "startDate": null}}}
Logs
Log File: docs/records/7293664/7293664_somef_log.txt
Running SOMEF on repository: https://github.com/IndexedConv/IndexedConv
SOftware Metadata Extraction Framework (SOMEF) Command Line Interface
Error: Please provide a config.json file or run somef configure.
[Somef Tool] Error occurred while processing record ID 7293664: somef file docs/records/7293664/7293664_somef.json does not exist
Log File: docs/records/7293664/7293664_codemeta_completeness_tool_log.txt
[codemeta completeness tool] Running Codemeta Completeness Tool on record ID: 7293664